👉 Mask RCNN Implementation on LabelMe Annotations Data 👈
## Prepare Data
### DataSet Folder Structure
[Labelme](https://github.com/wkentaro/labelme/) Annotations tools
```
- Data_folder
- train
- img1.jpg
- img1.json
- img2.jpg
- img2.json
...
- val
- img3.jpg
- img2.json
- img4.jpg
- img4.json
...
```
## Training
```python
# Configuration
# Adjust according to your Dataset and GPU
IMAGES_PER_GPU = 2 # 1
# Number of classes (including background)
NUM_CLASSES = 1 + 1 # Background
# typically after labeled, class can be set from Dataset class
# if you want to test your model, better set it corectly based on your trainning dataset
# Number of training steps per epoch
STEPS_PER_EPOCH = 100
```
The easiest way to get started is to simply try out on Colab: [
](https://colab.research.google.com/drive/142qQPGuzz7AemMVDl8iKw0fEe-hnIL1p?usp=sharing)
### Training the model on Custom Data
```bash
python customTrain.py train --dataset=path_to_Data_folder --weights=coco
```
### ReTraining from Last Checkpoint
```bash
python customTrain.py train --dataset=path_to_Data_folder --weights=last
```
## Requirements
- Python3.6
- Tensorflow-gpu==1.15
- keras==2.0.8
For more details check [Mask RCNN Repo](https://github.com/matterport/Mask_RCNN)